Thermoelectric Properties of Substoichiometric Electron Beam Patterned Bismuth Sulfide

Jose Recatala-Gomez, Hong Kuan Ng, Pawan Kumar, Ady Suwardi, Minrui Zheng, Mohamed Asbahi, Sudhiranjan Tripathy, Iris Nandhakumar,* Mohammad S. M. Saifullah,* and Kedar Hippalgaonkar*

ABSTRACT: Direct patterning of thermoelectric metal chalcogenides can be challenging and is normally constrained to certain geometries and sizes. Here we report the synthesis, characterization, and direct writing of sub-10 nm wide bismuth sulfide (Bi2S3) using a single-source, spin-coatable, and electron-beam-sensitive bismuth(III) ethylxanthate precursor. In order to increase the intrinsically low carrier concentration of pristine Bi2S3, we developed a self-doping methodology in which sulfur vacancies are manipulated by tuning the temperature during vacuum annealing, resulting in an increase in the carrier concentration since sulfur vacancies would act as electron donors. Indeed, this was demonstrated by Zhao et al. in bulk Bi2S3 polycrystals, introducing sulfur vacancies in the crystal structure, resulting in an increase in the carrier concentration since sulfur vacancies would act as electron donors. Therefore, bismuth sulfide (Bi2S3) could pose a good alternative to Bi2Te3 for room-temperature TE applications. Biswas et al. reported that bulk Bi2S3 has a low electrical conductivity (≈4 S/cm at room temperature) due to the intrinsically low carrier concentration (3.7 × 10^{16} cm^{-3}) but a large Seebeck coefficient (−352 μV/K). This would result in poor performance, and therefore, the carrier concentration needs to be appropriately tuned. One possibility of increasing the electrical conductivity is by self-doping via introducing sulfur vacancies in the crystal structure, resulting in an increase in the carrier concentration since sulfur vacancies would act as electron donors. Indeed, this was demonstrated by Zhao et al. in bulk Bi2S3 polycrystals, achieving a maximum zT of 0.11 at 523 K and a 2-fold increase in the power factor (S^2σ) from 0.91 μW/cm K^2 for the pristine sample to 1.80 μW/cm K^2 in the sulfur-deficient samples (either two-legged or single-leg devices), used in power generation from heat sources such as engines, power plants, and solar concentrators. However, these devices cannot provide power generation in upcoming applications such as lab-on-a-chip devices, biomedical devices, or wireless sensors for the Internet of Things. Therefore, it would be of interest to develop high performance and inexpensive materials whose fabrication can be cost-effective. The performance of a TEG is related to the efficiency of the thermoelectric (TE) material which in turn is directly proportional to its dimensionless figure-of-merit (zT). zT is defined as zT = (S^2σT)/κ, where S is the Seebeck coefficient; σ is the electrical conductivity; κ is the thermal conductivity and T is the absolute temperature. Thus, in order to achieve high performance, a synergistic optimization of the carrier concentration is required. The best material for room-temperature applications is bismuth telluride (Bi2Te3) and its alloys, in both bulk and thin-film forms. However, tellurium’s scarcity in the Earth’s crust as well as its toxicity have motivated scientists to find cheaper and nontoxic alternatives. Therefore, bismuth sulfide (Bi2S3) could pose a good alternative to Bi2Te3 for room-temperature TE applications.
The theoretical value of 44.7% for Bi$_2$S$_3$ obtained using optical image of a heat-treated sample on a 7 × 7 mm quartz substrate (scale bar = 10 mm).

In this work, we present a top-down approach for the synthesis of thermoelectric Bi$_2$S$_3$, leveraging upon the versatility of metal oxides (ZnO) and metal sulphides such as ZnS and MoS$_2$ albeit not for thermoelectric materials. In this work, we employed metal–organic resists that do not require (or require very little) chemical development. These resists have been developed for direct patterning of metal oxides (ZnO) and metal sulphides such as ZnS and MoS$_2$ albeit not for thermoelectric materials. In this work, we present a top-down approach for the synthesis of thermoelectric Bi$_2$S$_3$, leveraging upon the versatility of electron beam lithography combined with the advantages of metal–organic resists. We synthesized bismuth(III) ethylxanthate, a single-source precursor, and demonstrated the nanoscale patterning of pristine Bi$_2$S$_3$ comprised of sub-10 nm grid lines and micron-sized thin films. Moreover, we developed a methodology to self-dope the patterned films, introducing sulfur vacancies and thus increasing the electron concentration, thereby realizing the first n-type directly writable thermoelectric material that is potentially compatible with micro-TEG for on-chip applications.

RESULTS AND DISCUSSION

Bismuth(III) ethylxanthate, a yellow powder, was synthesized from a one-to-three molar mixture of bismuth(III) nitrate and potassium ethylxanthate in an aqueous medium. The thermal characteristics of the powder were evaluated by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) as shown in Figure 1(a). The TGA curve shows a steep one-step mass loss, starting at ~110 °C, until 161 °C, and subsequently a stable behavior with no observed reduction in mass is seen. The material decomposed to 45.8% of its original mass at 161 °C. This corresponds very well with the theoretical value of 44.7% for Bi$_2$S$_3$ obtained using calculations. Close correspondence between the obtained and theoretical mass losses suggests that the end product is most likely Bi$_2$S$_3$ and has a fairly high purity. The DSC analysis shows the melting of bismuth(III) ethylxanthate at ~110 °C with simultaneous decomposition. A smaller endotherm is observed later at about 160 °C, most likely due to atomic rearrangement, leading to crystallization of the material. No further heat changes were observed when heated to 500 °C. The formation of pristine Bi$_2$S$_3$ is confirmed by means of X-ray diffraction (XRD). Figure 1(b) shows the diffractogram of bismuth(III) ethylxanthate film heat-treated at 350 °C for 30 min (inset in Figure 1(b)). All the observed peaks are in good agreement with JCPDS card 01-074-9437, thus confirming the formation of Bi$_2$S$_3$.

The electron beam exposure response behavior of bismuth(III) ethylxanthate resist [Figure 2(a)] was studied by exposing predefined lines (Supporting Information Figure S3) at various doses. The heights of these lines were measured using an atomic force microscope (AFM), and their normalized values were plotted against the dose [Figure 2(b)]. From this plot, two crucial parameters were extracted: sensitivity and contrast. Sensitivity is a parameter that quantifies the minimum amount of delivered dose that is required to achieve the selective development (in other words, how impactful is the electron beam dose on the resist). The contrast (γ), whose mathematical description for a negative tone resist is $\gamma = \log (D_{100}/D_0)^{-1}$, where D_{100} and D_0 are the minimum dose at which the resist has undergone a complete change of its chemical structure and the highest dose at which the resist is not yet affected by electron irradiation, respectively, describes how easy it is to differentiate between exposed and unexposed areas of the resist. The sensitivity of bismuth(III) ethylxanthate was found to be 5.4 mC/cm2. This value is much lower than the sensitivity values reported for other negative chalcogenide resists such as ZnS and MoS$_2$ resists (~35 mC/cm2). In order to understand the effect of electron dose on bismuth(III) ethylxanthate, circular discs of 50 μm were patterned using an electron beam to perform micro-FTIR and micro-Raman spectroscopies [Figures 2(c) and 2(d), respectively]. Micro-FTIR spectroscopy results suggest that the exposure to a beam of electrons leads to the disappearance of xanthate moieties represented by ν(C=S) at 1044 cm$^{-1}$ and ν(C=O) at 1121 cm$^{-1}$, most likely via the Chugaev elimination [Figure 2(c)]. A broad unidentified peak centered at 972 cm$^{-1}$ appears. Analysis of the same using micro-Raman spectroscopy [Figure 2(d)] shows the appearance of characteristic lines of Bi$_2$S$_3$ at 232, 256, 307, and 428 cm$^{-1}$. In other words, the organic
parts in bismuth(III) ethylxanthate, i.e., the xanthate moieties, decompose under an electron beam, leaving behind Bi$_2$S$_3$. The appearance of Bi$_2$S$_3$ makes the exposed resist insoluble in organic solvents such as isopropyl alcohol. This property was utilized to pattern nanoscale Bi$_2$S$_3$ lines. Figures 2(e) and 2(f) show 9 nm wide lines in a grid of pitch 100 nm. Our technique offers the ability to pattern diverse shaped structures with the potential for precisely positioning them in any area of a substrate. Taking a cue from an earlier study on UV and EUV exposure of copper and indium xanthates to produce their respective metal sulfoxides, we surmise that bismuth(III) ethylxanthate can also be patterned using UV radiation to produce Bi$_2$S$_3$.

Once the properties of the resist have been assessed over a wide range of dose and annealing conditions and the optimal parameters for patterning are determined (Supporting Information Figures S4 and S5), we proceeded to study the electrical properties of pristine Bi$_2$S$_3$. Bismuth(III) ethylxanthate was drop casted on a 7 × 7 mm2 quartz substrate and annealed at 350 °C for 30 min. Both drop casting and annealing were conducted inside a glovebox to prevent oxidation. The electrical properties of as-deposited films were measured, and the resistance was found to be ∼1 MΩ (Supporting Information Figure S6). This indicates a low carrier concentration, as expected based on previous studies on bulk pristine Bi$_2$S$_3$.

Next, we conducted annealing at various temperatures in vacuum (pressure ∼ 10$^{-2}$ Torr) in order to create sulfur (S) vacancies and increase the carrier concentration. Experiments were carried out in steps of 25 °C, at 400 °C, 375 °C, 350 °C, and 300 °C, with a heat-treatment time of 2 h at each temperature. The impact of vacancy introduction on the crystal structure was investigated by means of XRD. The diffractogram for the film annealed at 400 °C resulted in a Bi-rich phase [Supporting Information, Figure S7(a)]. For annealing temperatures below 400 °C [Figure 3(a)], all...
peaks were indexed to the diffraction peaks of JCPDS card 01-074-9437, just as in the pristine case [Figure 1(b)]. The two low intensity peaks [marked with an asterisk in Figure 3(a)] were found to match a mixed Bi-O-S suboxide (JCPDS card 01-084-7195). The formation of S vacancies and their quantification were determined by X-ray photoelectron spectroscopy (XPS). Figure 3(b) and Supporting Information Figure S1 show the core levels of Bi 4f and S 2s, respectively, of a film vacuum-annealed at 350 °C. The peaks in Figure 3(b) are centered at 158.51 and 163.83 eV, and the peak at binding energy of 225.60 eV in Supporting Information Figure S1 confirms the formation of Bi 2S 3. The weak intensity of the peaks corresponding to Bi 2O 3 in comparison to the peaks corresponding to Bi 2S 3 in Figure 3(b) may imply that Bi 2O 3 only appears as a thin layer on the surface of the sample and does not appear as a phase throughout the thickness of the film. The peak centered at 157.59 eV in Figure 3(b) corresponds to uncoordinated Bi, thereby confirming the existence of sulfur vacancies in the films. The atomic ratio of Bi to S was calculated from the areas of Bi 4f 7/2 and S 2p 3/2, and the results are summarized in Figure 3(c).

The electrical conductivity of the vacuum-annealed samples was measured, and the room-temperature values are plotted in Figure 3(c). We concluded that 300 °C was the minimum vacuum annealing temperature necessary to introduce S vacancies that contributed to the total carrier concentration in this system and that 400 °C is the upper boundary in the temperature scale for operation since the films become mechanically unstable with all sulfur removed according to the XPS analysis [see Supporting Information, Figures S7(c) and (d)]. We observed a monotonic increase in conductivity with annealing temperature, indicating that charge carriers were being created as sulfur was removed, peaking at 375 °C. The manipulation of charge carriers by tuning the annealing temperature was further verified by the change in Seebeck coefficient of the films with sulfur removal, shown in Figure 3(d). According to the Mott formula, $S \propto (\frac{1}{n})^{2/3}$, and therefore an increase in carrier concentration will be accompanied by a decrease in Seebeck coefficient. This trend is observed in our case, as well as observed by Zhao et al. for bulk polycrystalline samples. Attempts to measure the Seebeck coefficient of the film annealed at 375 °C were unsuccessful due to difficulties in generating a sufficient temperature gradient. This temperature also provokes a certain degree of delamination of the films. Hence, the second best condition, annealing at 350 °C, was used for further experiments, as it is the best compromise between enhancement in electrical conductivity and mechanical stability.

We now proceed to study the electrical properties of directly patterned thin films of Bi 2S 3. These were prepared by electron beam exposure of the resist and subsequently heat-treated at 350 °C for 30 min in a glovebox before transferring them to a vacuum furnace for thermal annealing at the same
temperature. Figure 4(a) shows a top-view SEM image of a directly written substoichiometric Bi$_2$S$_3$ thin film, annealed at 350 °C for 2 h. The film has lower packing density, and therefore, lower electrical conductivity should be expected since the electron mobility would be reduced. In order to gain better insights into the topography of the film, atomic force microscopy (AFM) measurements were carried out, and the results are shown in Figure 4(b) and Supporting Information Figure S9. Five different profiles were taken, revealing an average thickness of 14.7 ± 0.54 nm. In addition, five profiles across the film were also taken, and the root-mean-square (RMS) roughness was found to be 1.26 ± 0.11 nm. Since the film was very thin, the sheet resistance was expected to be high. The lower thickness and higher RMS roughness in comparison to the pristine film (0.65 ± 0.08 nm, Supporting Information Figure S10) indicate that the thermal treatment has a direct impact on increasing its roughness. Also, there are nanopores distributed throughout the surface of the film, with an average pore size of 73.11 ± 23.67 nm. Porosity could reduce the lattice thermal conductivity, as demonstrated by Shi et al. in bulk polycrystalline tin selenide (SnSe). They achieved selective porosity by decomposing a host material (indium selenide nanoprecipitates, InSe) into the SnSe matrix during sintering, which resulted in a lower thermal conductivity. Furthermore, although our resist is capable of sub-10 nm resolution, observing porosity after vacuum annealing implies that its patterning at that scale has limited usefulness due to difficulty in electrical measurements.

A device for the simultaneous measurement of the in-plane thermoelectric properties (Seebeck coefficient and electrical conductivity) was patterned by means of electron beam lithography [Figure 4(c)]. When measured using a room-temperature four-point probe, the sheet resistance drops to 570 kΩ for the directly written film vacuum-annealed at 350 °C for 2 h [Supporting Information Figure S12(b)]. Figure 4(d) shows the temperature-dependent electrical conductivity and Seebeck coefficient of a typical patterned film annealed at 350 °C in vacuum. Despite the presence of nanopores, 100% relative density has been considered when measuring the electrical conductivity, as this represents the lower bound for electrical conductivity values. The electrical conductivity at room temperature was found to be 6 S m$^{-1}$, which is higher than reports for other chemically grown films via chemical deposition and dip-coating as well as previous reports for physically grown films using thermal evaporation, which typically report an electrical conductivity only as large as 0.1 S m$^{-1}$. Hence, our values are 60 times higher due to the novel solution-processable and postprocessing techniques, in addition to having the potential to be compatible to on-chip technologies at the nanoscale. However, these values are small in comparison with their bulk counterparts and are attributed to the smaller grain size of chemically deposited bismuth sulfide in comparison with sintered powders. The strategies deployed for chemical thin-film growth are not compatible with on-chip technologies, in addition to being rather cumbersome processes. On the other hand, our method offers a reasonably quick and inexpensive alternative that can
be performed in a high-throughput fashion.45 Finally, from the temperature-dependent electrical conductivity, an Arrhenius fit
\[\sigma = A \exp(-E_a/k_B T), \]
where \(A \) is a prefactor, \(k_B \) the Boltzmann constant, and \(T \) the absolute temperature] was performed for a single carrier activation energy \((E_a) \), calculated from the slope of the \(\ln(\sigma) \) versus \(T^{-1} \), and was found to be \(\sim 80 \text{ meV} \). This is the energy required for the trapped defect states to become free charge carriers that will contribute to the overall carrier concentration. Interestingly, the Seebeck coefficient is smaller \((\sim 20.68 \mu \text{V K}^{-1} \text{ at } 323 \text{ K})\) than the Seebeck coefficient reported for a bulk polycrystalline sample at the same temperature, indicating that the carrier concentration is past the optimal point. The closeness of the Seebeck coefficient of patterned film and the Seebeck coefficient of its drop-casted counterpart \((\sim 29.37 \mu \text{V K}^{-1})\) indicates that the nominal carrier concentration is in a similar range, and therefore the difference in electrical conductivity between the two comes from the difference in mobilities. Attempts at measuring the Hall coefficient, despite the patterning of Hall electrodes, proved futile due to the low electrical conductivity and large porosity of the films. The carrier concentration \((n)\) was calculated by solving the linearized Boltzmann transport equation at 325 K and \(m_{\text{Ferm}} = 0.333m_e\), and it was found to be \(1.03 \times 10^{18} \text{ cm}^{-3} \), which is higher than the carrier concentrations reported by Zhao et al. \((\text{largest } n = 4.17 \times 10^{18} \text{ cm}^{-3})\).20 Using the relationship \(\sigma = ne\mu \) (where \(\mu \) is the mobility, \(\sigma \) the electrical conductivity, \(e \) the electron charge, and \(n \) the carrier concentration), the mobility at this doping level was calculated to be \(4.91 \times 10^{-3} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \). This value is substantially smaller in comparison to the values reported by Zhao et al. \((\text{Supporting Figure S13})\).20 This could be attributed to the lower carrier concentration reported in their work \((2 \text{ orders of magnitude lower than the carrier concentration reported herein and hence a larger mobility})\) and especially to the dissimilar synthesis and postprocessing conditions. Zhao et al. sintered the samples, which led to larger grain sizes \((\text{in the order of microns})\), while in our case, the grain size is in the order of tens of nanometers. Hence, charge carriers will suffer more scattering events in nanocrystalline samples rather than in sintered ones. In order to improve the mobility, larger grains could be realized in our samples by adding another step to the postprocessing workflow: after vacuum annealing, one could perform light sintering, locally melting parts of the porous nanostructures to act as phonon-scattering centers. These two strategies may potentially result in an overall enhancement of the figure-of-merit \((zT)\). In addition, the development of a \(p \)-type inorganic, electron-sensitive resist is necessary in order to realize a fully functioning TEG that provides power generation when coupled to an on-chip microdevice.

\section{MATERIALS AND METHODS}

\begin{description}
\item[Reagents.] Bismuth nitrate \((99.99\%\), hydrochloric acid \((37\%\), anisole \((\text{anhydrous, } 99.7\%\), and chloroform \((\geq 99.5\%\)) were purchased from Sigma-Aldrich \((\text{Singapore})\). Potassium ethylxanthate \((96\%\)) was purchased from TCI Chemicals, Japan. All reagents were used without further purification.

\item[Synthesis of the Resist.] The two-step synthesis was done by dissolving 2.0 g of powder bismuth nitrate, \(\text{Bi(NO}_3)_3 \), in 50.0 mL of deionized water, with the consequent formation of a white precipitate of \(\text{Bi(OH)}_3 \). Next, hydrochloric acid \((\text{HCl})\) was added dropwise with vigorous stirring in order to dissolve this precipitate and form \(\text{BiCl}_3 \). The reactions proceed as follows:
\end{description}

\begin{align*}
\text{Bi(NO}_3)_3 + 3\text{H}_2\text{O} & \rightarrow \text{Bi(OH)}_3 + 3\text{HNO}_3 \\
\text{Bi(OH)}_3 + 3\text{HCl} & \rightarrow \text{BiCl}_3 + 3\text{H}_2\text{O}
\end{align*}

A slight excess of potassium ethylxanthate, 2.05 g, was dissolved into 50.0 mL of deionized water, forming a clear yellow solution. It was added slowly to the first solution with vigorous stirring which reacted immediately to form yellow precipitate of bismuth(III) ethylxanthate \((\text{C}_3\text{H}_7\text{Bi}_2\text{O}_5\text{S}_2)\). The solution is let to stir for another 30 min to ensure the completion of the reaction. The resulting mixture was filtered and the precipitate rinsed with deionized water, then dried. The Bi\(_2\)S\(_3\) resist was prepared by adding 30 mg of bismuth(III) ethylxanthate in 0.5 mL of chloroform and then adding 0.5 mL of anisole to it. All the resist solutions were filtered before spin-coating by means of a syringe filter. The samples for electron beam patterning were prepared by spin-coating 100 \(\mu \text{L} \)

\section{CONCLUSIONS}

A framework for the direct nanoscale patterning of arbitrarily shaped bismuth sulfide \((\text{Bi}_2\text{S}_3)\) via electron beam lithography has been developed. A self-doping strategy was deployed in order to increase the inherently low carrier concentration of pristine \(\text{Bi}_2\text{S}_3 \), achieved by selectively introducing S vacancies in the films during vacuum annealing at temperatures ranging from 300 to 400 °C. XRD measurements confirm that the structure remains unchanged until 400 °C, while XPS measurements demonstrate that as the annealing temperature increases the atomic percentage of sulfur decreases, accompanied by the presence of a peak centered at binding energy of 157.59 eV, corresponding to uncoordinated Bi species. The correlation between sulfur vacancies and electroactive charge carriers is further confirmed by electrical and Seebeck measurements, which show an increase of the electrical conductivity with a corresponding decrease in sulfur content as well as a decrease in Seebeck coefficient with decreasing sulfur content, as predicted by the Mott formula. We determined that annealing at 350 °C in a mild vacuum \((10^{-2} \text{ Torr})\) for 2 h is the optimal postconditioning process for sulfur vacancy introduction and film adherence to the substrate. Therefore, a thin film was patterned and post-treated, and its temperature-dependent thermoelectric properties were evaluated. We report a low electrical conductivity \((\sigma)\) of 6 S m\(^{-1}\) at room temperature. SEM and AFM studies show that the films have nanoporous structures responsible for low mobility and, in turn, leading to a low electrical conductivity. The room-temperature Seebeck coefficient of \(\sim 21.41 \mu \text{V K}^{-1}\) indicates that the carrier concentration is past the optimum point, in line with the theoretical calculation of carrier concentration using Boltzmann transport equations. An enhancement in the electrical properties could be achieved by improving the postprocessing, in order to increase the average grain size and therefore increase the mobility. The lattice thermal conductivity could also be decreased by manipulating the porous nanostructures to act as phonon-scattering centers. These two strategies may potentially result in an overall enhancement of the figure-of-merit \((zT)\). In addition, the development of a \(p \)-type inorganic, electron-sensitive resist is necessary in order to realize a fully functioning TEG that provides power generation when coupled to an on-chip microdevice.

\section{REMARKS}

ACS Applied Materials & Interfaces
of a solution. Electron beam patterning was conducted using an Elionix ELS 7000 electron beam lithography machine operating at 100 kV with a probe current of 0.8 nA. The exposed resist was developed and rinsed in isopropl alcohol for 30 s each.

The device for TE measurements was fabricated using a multistep standard nanofabrication procedure, involving coating of poly(methyl methacrylate) (PMMA) resist, electron beam lithography, metal deposition (10 nm Ti and 100 nm Au), and lift-off in acetone. The device consisted of two thermometers, two heaters, two Hall bars, and four lines for resistivity measurement.80

Introduction of Sulfur Vacancies via Vacuum Annealing. Pristine Bi2S3 thin films are very resistive due to the intrinsically low conductivity of Bi2S314 and the small geometry and thickness of the patterned films. In order to decrease the resistance and therefore be able to measure the thermoelectric properties of the films, sulfur vacancies were induced. Owing to the low vapor pressure of sulfur, vacuum annealing under inert conditions at a temperature above the vaporization pressure can induce sulfur vacancies, in a mechanism that resembles the formation of oxygen vacancies in thermoelectric oxides, such as ZnO and SrTiO3.48−50 Annealing was conducted at different temperatures in order to manipulate the sulfur vacancy concentration in a tube furnace at a pressure below 10−2 Torr for 2 h. Forming gas (4% H2, 96% Ar) was continuously pumped into the furnace at 100 sccm in order to avoid oxygen contamination.

Material Characterization. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed in a nitrogen atmosphere (flow rate = 30 mL/min; heating rate = 10 °C/min) using a Netzsch STA 449 F1 Jupiter simultaneous thermal analyzer.

In order to have a large material area for characterization, thin films were fabricated by drop casting the resist on 7 × 7 mm segments of p-type Si (100) with 300 nm of SiO2 on top, cleansed as described earlier. Both drop casting and subsequent annealing were carried out in a glovebox in order to avoid oxidation.

A JEOL JSM 7600F FEG-scanning electron microscope (SEM) was utilized to investigate the morphological properties of the directly written and the drop-casted films.

The topography and thickness of the directly written thin films were evaluated using an atomic force microscope (AFM). A SPM Bruker/Veeco DI 3100 AFM operating in tapping mode using an undoped silicon cantilever with a force constant of 10−7 N/m was purchased from Nanosensors. The acquired AFM images were processed using the Nanoscope Analysis 1.10 software.

X-ray diffraction (XRD) was used to investigate the crystal structure and crystalline phases of the drop-casted samples. Measurements were conducted by means of a Bruker D8 Advance (X-ray source: Cu−Kα), and phase identification was conducted using Bruker’s EVA software.

X-ray photoelectron spectroscopy (XPS) was employed for the elemental quantification as well as oxidation state identification of the heat-treated films. A Thermo Scientific Theta Probe XPS equipped with a monochromatic Al−Kα1 X-ray source (energy = 1486.7 eV) was used for spectra acquisition. The X-ray spot was adjusted to 400 μm in diameter with an X-ray incident angle fixed to 30° with respect to the normal surface. Charge compensation was achieved using low-energy electron flooding. Survey scans were acquired at a step of 1 eV and pass energy of 200 eV, while the narrow scans were acquired at step of 0.1 eV and pass energy of 40 eV. Data analysis was conducted using the Advantage software.

In-plane, temperature-dependent Seebeck coefficient and electrical conductivity were simultaneously measured in a home-built cryostat under high vacuum (≈5 × 10−7 Torr). The samples were placed in a 24 pin chip carrier, and electrical connections between the device contacts and the chip carrier were established by means of a West Bond wirebonder equipped with an aluminum thread. Details of the measurement can be found in Kumar et al.40

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c06829.

Figure S1: Material characterization of a bismuth(III) ethylnathane film heat-treated at 350 °C for 30 min: SEM images [(a) and (b)] and elemental maps for bismuth [Bi, (c)] and sulfur [S, (d)]. Figure S2: AFM topography images of predefined lines exposed at different doses. Figure S3: Optical images of bismuth-(III) ethylnathane thin films exposed at different doses. Figure S4: Optical images of bismuth(III) ethylnathane thin films annealed at different temperature and time. Figure S5: Optical image of the device for thermoelectric measurements and room-temperature four-probe resistivity measurement of pristine Bi2S3. Figure S6: Material characterization of a pristine Bi2S3 film annealed at 400 °C: XRD and XPS. Figure S7: Optical images of a pristine Bi2S3 thin film before and after annealing at 400 °C. Figure S8: Extended AFM data for the directly written thin film annealed at 350 °C. Figure S9: Extended AFM data for the directly written pristine thin film. Figure S10: EDX elemental mapping of a substoichiometric, directly patterned thin film. Figure S11: Nanopatterned device for thermoelectric measurements and room-temperature four-point probe I−V curve measured for a substoichiometric Bi2S3 thin film, annealed at 350 °C (PDF)

AUTHOR INFORMATION

Corresponding Authors

Kedar Hippalgaonkar — Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore; School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore; orcid.org/0000-0002-1270-9047; Email: kedar@ntu.edu.sg

Mohammad S. M. Saiﬁullah — Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore; orcid.org/0000-0002-3172-041X; Email: saiﬁullahm@imre.a-star.edu.sg

Iris Nandhakumar — Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom; orcid.org/0000-0002-9668-9126; Email:iris@soton.ac.uk

Authors

Jose Recatala-Gomez — Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore; Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom; orcid.org/0000-0003-3560-2768

Hong Kuan Ng — Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore; Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Republic of Singapore; orcid.org/0000-0001-6781-5827

Pawan Kumar — Institute of Materials Research and Engineering, Agency for Science, Technology and Research...
Acknowledgments

A.S., P.K., and K.H. would like to acknowledge funding from the Accelerated Materials Development for Manufacturing Program at A*STAR via the AME Programmatic Fund by the Agency for Science, Technology, and Research under Grant No. A189880043. J.R.-G. and I.N. would like to thank A*STAR Graduate Academy’s ARAP programme for funding J.R.-G.’s graduate studies in IMRE, A*STAR.

References

